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ANALYSIS OF TURBULENT FREE-CONVECTION BOUNDARY LAYER ON FLAT PLATE ‘ _

By E. R. G. ECKERT A~mTHOMAS W. JACKSOX

SUMMARY

Ii”ith the use of Kdrtndn’s integrated momentum equation for
thp boundary layer and data on the wall+hearing stress and
hwt tran~fer in -forced+onrection $OW, a calculation wa~ car-
ritwi out for the $OW and heat transfer in the turbulent free-
r(inrectionbounda~ [ayer on a rertica[ j’af p[ate. Ile calcu-
hf ion k-for a $uid with a Prandtl number that th clo8e to 1.

.4 formula UM8derired -for the heat-transfer coejicient that
~IYTSin good agreement with ezpem-naental data in. the range of
{.:ramiof .number8 from I(ll” ~0 10n. Because of the good
trgrpement betueen the theoretical formula and the experimental
data, the -formula may be used to obtain data for higher Gra~hof
numbera. The calculation abro yielded formulaa for the muz-
imum re!ocity in the boundary layer and for the boundary-
iaypr thichwesfi.

INTRODUCTION

Recent developments in the field of gas turbines IMve re-
vwded the need for data on heat transfer in turbulent free-
t’onwction flow at wry high Grashof numbers (lOM to
10’S). For exampIe, in using the method of free-convection
rooh.ng for turbine b~ades, the centrifugal forces generate
n free-convection flow of the cooLing fluid in the bIade pas-
sages that is within the preceding range of Grashof numbers.
Free-convection flow is also superimposed on the flow of the
wohng air in the hollow- blades of air-coded gas turbines
and may influenre considerably the heat transfer under cer-
tain renditions. The radial flow present in the cooIed
~JOIIIIda~laye= on the outside of cooled turbine blades is
also of a type similar to the free-ccnwmtion flow in the bkle
coolant passages.

In order to undwstrmd and to evaluate such cooling proc-
esses, information on the brat transfer,”the boundary-layer
thickness, and the veIocitiea connected with free-comection
flow- is necw~ary. The knowkdge of turbulent, free-
VOnWCtion flow. however, is limited. Experiments on plane
vertical surfaces give heat-transfer data up to Grashof
times PrandtI numbers of 1012(summarized in references 1
and 2). GriiYdhs and Davis (reference 3) determined, in
addition, tempemture and velocity profiIes. Watzinger and
Johnson (reference 4) measured heat transfer and temper-
:iture and veIocity profiks in a superimposed forced- and
free-convection flow in a verticaI tube. Brow-n and Marko
[reference 5) show by theoretical considerations that a gen-

eral reIation exists between the Grashof number that char _
acterizes free-convection flow and the Reynolds number that
characterizes forced flow. Colburn and Hougen (reference “’ ~-~
6) derive a formula for the heat transfer in turbulent free- ___
con-rection flow on a vertical plate. However, only the “-
laminar suh18yer in the immediate ‘neighborhood of the wall --
was irmestkated in reference 6 and the thickness of this -—
sublayer, made dimensionkss by the shearing stress -reIocity---—
and the kiiematic .viseosity, was assumed to be the same
as in forced flow. This analysis therefore gives no infomna-
tion on the whole boundary-layer thickne= and on the
velocities.

The problem of turbulent free-convection flow is ap-
proached herein using another method. Certain shapes are
assumed for the temperature and -reIocity profdes in ‘the
free-convection boundary layer. In addition, an empirical
relation for the shearing stress on the wall and a heat-
transfer coefficient derived from forceckonvection flow- are
used to estimate the boundary-layer thickness, the ma.m”-
mum veIocity within the bounda~ Iayer, and a heat-transfer
coefficient for free-convection tlo-w. N70experimenta~ free-
convection measurements are used in the calculations.

SHEARING STRESS AND HEAT PLO W IN FORCED-
CONVECTION BOUNDARY LAYER

The relations for forced-convection fiow that are needed in
the theoretical free-convection calculations are compikd in
this section. It is known that for ReynoIds numbers that
are not too high, the velocity profile in a turbulent boundary
layer on a flat pIate can be represented by the equation

(1)

(AU symbols are defied in the appendix) The shearing
strew on the pIate surface in such a flow is gken by the
equation (reference 7,)

(2]

This equation is the relation for the shearing stress on the
WW that is used in the derivation of the bounclary-Iayer
equationa for the turbulent free-convection boundary layer.
By introducing equation (l), the velocity protile, the shear-
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ing stresscan
bdge of the
thickness &

also be repressed by the velocity u, at the outer
boundary layer and by the boundary-layer

()
lf4

TW=0.0225 PU12 ~-
U18

(3)

For fluids or gases with a Prandtl n&nber cquaI h 1, the
temperature profile is similar in shape to the velocity proiile.
When the temperatureswithin the boundary layer are meas-
ured with the temperatu.m outside the boundary layer as
reference, the expression for the temperature profile is

‘=’+-(WI (4)

Equation (4) is valid for wducs of y less than & For larger
values of y, .9=O.

Rcynolds analogy betweem W turbulent exchange of
momentum and heat gives the relation (referegce 8) .

dt
:=gcp & (5)

Because the temperature and velocity profiles are similar in
shape for a Prandtl number equal to 1, the finite temperature
and velocity differences at two arbitrary points in the flow
can be introduced into the last equation instead of the dif-
ferentials. Using the Merences between the wall and the
flow outside the boundary layer and specifying the heat flow
and the shearing stress for the position at the wall give the
following equation:

(6)

The. introduction of the law (equation (3)) for the shearing
stress into this expression yields the following equation:

(7)

Heat transfer is usually calculated with dimensionlessmoduli.
Such a moduIus is the Stanton number

Experimental investigations show that for fluids with
PrandtI numbers from approximately 0.5 to 50 (reference 1,
p. 520) the sam~ relation holds when it is multiplied by the
factor Pr-2n. ,

()st=_AL-=().()225 & “’(pr)-va
gpcpulew

(8)

This relation for the heat flow gtiis used in the derivation of
the bounds.~-layer equations for the turbulent free-
convection boundary layer.

Replacing the boundary-layer thickness 8 by

()
lJK

5=0.366z z
ul x

which is the boundary-layer thickness on a flat plata in
turbulent forced-convect.ion flow (referenc~ 1, p. 481), trtms-
forms equation (8) into W widely accepted formula for heat
transfer on a ffat plate in the turbulent rtmgo

(9)

DETERMINATIONOF TURBULENTFREE-CONVECTION
BOUNDARYLAYER

DERN’ATION OF BOUNDARY-LAYER EQUATION9

If a stationary plane vertical wall is heated to a tcmpern-
ture higher than the surroundings, t.hclayer of fluid adjacent
to the wall is heated by conduction from the wall. In this
way, buoyant forces are generated that cause this layer to
flow in an upward direction. This layer of fluid adjacent to
the wall to which the vertical motion is confined is called
the free-convection boundary layer. The boundwy layer
begins with zero thickmw at the lower end of tho vertical
wall and increases in thickness in t.houpward direction. At
a certain dietante from the lower end of t.hcwall the bound-
ary layer becomes turbuhmt, depending on the critical
Grashof number. The distance measured vertically from -
the lower end of the wd is called x and the distanm normrd
to the wall y. In order to determine the boundary-layer
thickness for steady state, a small stationary volumo ele-
ment in the turbuknt region of the bounda~ laycr is con-
sidered. Figure 1 shows this volume element. The &ncn-
sions of the.element are da along tho wail and 1 normal to
the wall. The length 1 should be larger than the boundrtry-
layer thickness IS. For twodkmmsional flow, the dimension
of the volume element normal to the plane of figure 1 may
be considered to be 1. The upward velocity of the fluid in
plane 1–1 at a distance y from the surface of th wa]l is u.
Then the mass flow through a small area with a width dy is
pu dy and the flow of momentum in the z-direction is@ dy.
The momentum flow in the z-direction entering the volume
element through piano 1-1 is

In progrwing to planc 2-2 the momentum fiow changes by

The mass flow eutering the volume ekment through plane
I-I is generally different from the mass flow leaving the
element through plane 2-2. Tlwrcfore fluid enhwaor leaves
the volume element through the pknc parallel to tho wall
at a distance /. Bccaum it is assumed that the velocity in
the z-direction outsido the boundary layer is so small that
it can be negkcted, no morncntum in the z-direction is
carried through the plane.

The. rate of chango of momentum must be in equilibrium
with the forces acting in the zdirection on the fluid within
or on the surface of the volume element considered. A shear-
ing stress rU acts on the w’alL TILCforce connected with
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thh stress is r= d.r. No shearing stress occurs on the sur-
fare of the volume element that is parakd to the wall and
at a distance 1 from the wall because outside the boundary
Iayer the velocity imthe r-direction is zero.

-kording to the bounda~-layer theory, the pressure
change can be neglected along any normal to the surface.
.! constant pressure difference dp therefore exists between
planes l–l and 2–2. This pressure difference gives a force
on the vohune element of magnitude [ dp. In addition to
the forces on the surfaces, there is a force
of the fluid within the volume element

(.J’p@dx

due to the weight

The process of summing up all the forces and equating
them to the change in momentum flow gives the momentum
equation

Because no flow exists outside the boundary layer, the
pressure difference between plane-s 1–1 and 2–2 is balanced
by the weight of the fluid layer between the planes

dp=pag dz

Illen both sides of this equation are multiplied by 1 and
the right side of the equation is changed to the integraI
form, the following equation is obtained

‘d’=(J’’”‘old’
Introducing the preceding equation into the momentum
equation gives

:(Jzpu’d’)dr=’[Jz’’’-p’d’l=df’=df
Introducing the expansion coefficient.defined by the equa-

tion

the first term on the right side of the prececkg equation
can be transformed into

r
g dxu ;Bp(t–tJdy

Designating the difference between the temperature t at the
distance y and the temperature tt outside the bounda~
layer by 6, the following expression is obtained:

In the applications considered, the essential influence of
the density changes on the flow is taken into account by the
introduction of the expansion coe5cient ~. The other in-
fluences of variable density on tlw flow and the variation of

21sas7-5&l&

the expansion coefficient ~ with smaIItemperature differences __
are negligible. Therefore, P and p can be assumed constant
in the preceding expressions. The momentum equation for
the free-con~ection boundary layer therefore becomes Q

(lo)

A similar equation is set up for the heat flow through the
vohune element in &we 1. The heat carried with the
fluid through plane 1–1 is

Jgpc; :u@dy

where the enthalpies CP8are measured from the temperature
outside the boundary layer. The specific heat and density
are considered constant.

FIOURZl.—h-omendature in deriving zquuths &r kee+mnweth hmdsry Iwer,

The heat carried out of pkne 2–2 diffem from that carried
into plane l–l by

The ditl+rence in the heat flow through planes I–1 and 2–z
must come from the surface and the heat flow leatig the _.
plate per unit time and mea is therefore

(11)

Equation (11) is the heat-tlow equation for the f~e-convection
boundary layer.

Equationa for the laminar free-convection boundary layer
that are a.nalogous to equations (10) and (11) were derived
and solved by Squire. (See reference 9.)

SOLUTION OF BOUNDARY-LAYER EQUATIOXS

Equations (10) and (11) are sufficient to cakulate
boundary-layer thickness 6 and the velocit.y u when
shape of the -relocity and temperature profiles viithin
boundary layer and the laws for the shearing stress and

the
the ‘“
the
the -a

-.
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heat flow cm the wall are knowu. It was suggested by
von Kfwm6n that an approximate solution may be obtained
IJYintroducing approximate shapes for both profile: (ref-
erence 7). The accuracy of the solution is better the more
closely the assumed shapes correspond to the real profiles.
!l’he method, however, proved comparatively insensitive to
chfinges in the profile shape.

.4s mentioned in the section “INTRODIJCTIOhT” some
informtition on the shape of the velocity and temperature
profiles in turbulent free-convection flow can be obtained
from reference 3. In figure 2, the measured values of both
profiles in the turbuknt range are presented with the ratios
9/L9wand u/u.~.. plotted against the disttmce from the wall in
a.narbitrary scale. The value u.== m-asdetermined by draw-
ing curves through the measured velocity values given in
ttilde W of reference 3.

The distance from the wall where the curves u/u~ti have
fhe value 0.5 was arbkrarily assigned the value 1. The lines
in figure 2 are the curves by which the temperature and
~elocity profiles are approximated herein. These profiles
twepresented in @re 2 in such a way that the velocity pro-
file hm the value 0.5 at a distance 1 and the temperature
prdik the value t).2 at.a.distance 0.5 from the wall. An in-
dim tion of the shape of turbulent free-convection flow. pro-
files can also be obtained from the measurements by Watz-
inger and Johnson (reference 4) on mixed forced- and free-
convection flow in a vertical tube. Some of these measured
profiles are presented in figure 3.

Equation (4), which describes the forced-convection tem-
perature profile, is used for the temperature profile in turl.m-
lent free-convection flow. The profiles of figure 2 indicat~
t.lmt this assumption is reasonable. The velocity profile in
free-convection flow, however, diffels from the forced-flow
profile by having a. velocity of zero outside the boundary
layer. Accordingly, equation (1) is multiplied by a function
of y/6, which brings the velocities back to the.value zero at
the outer edge of the boundary layer where y=& Two
simple expressions that fulfill this condition and that agree
quite well with the measured values are plotted in figure 2.

=~
.
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o I 2 3
Digkmce from mwll

FIGCRE 2.-Experhnental ed theoreticrd velaclty and temperature prodles for turbulent
free-amuct.ion flow on a flat plak. Experlmentsd dnta from mfererm &

(a) Reynolds number of 0340(corresponding
to awmge Telccltx of 4.7 cm@c).
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(b) Reynolds number of 14,’NI(mrreepcmdlne
to avcrnee velocity of 9.4 cro@c).

FInCItE &—TemwrahIIe and velwlty profiles In mixed forced- and Ires+on$wtlon
flow of wak in wrtlml tulw df 5fL8mlllhnrter (1.Q8In.) d.lometer. Data fmm fiuum10 of
referenee 4.

The velocity profi~e t.htit represents tk measured points
somewhat better is used in the following cnlrultitions:

‘=UW7(+
Equation (12) is valid for values of v less tlum & For Iargw
~alues of y, u= 0. The maximum velocity u-. of this profle
can be found by differentititing equation (12), giving

um==o.537 ‘uI (13)

By use of equations (4) and (12) and the ftict thut u=tl m~(l
6= Ofor distances greater than 6 from the wall, the integrtils
in the momentum and heat-flow equiitions (equations (10)
and (11))become

s1u~dy=o, r)52:36U,2
o

J
1

e(fy=o.125 M.
o

[

I
ued~=o.0366 6U10U

.0

The same value of 6was used for the velocity an+ km~pm-
ture profiles. Calculations on forcvd-convection heat t.rtins-
fer indicate that the same value of 8 for the velocity nml
temperatureprofiles can be used for fluids thut have a Pramlt.[
number close to 1 (reference 8). For very large or smiill
Prandtllnumbers in forced flow, the t.lticknwsof the tenqwra-
tme boundary layer is considerably smaller or larger thtit~
the thicknessof the.ve.locit.ylmmdary layer. This condition
is probably true for free-convection flow also.

In order to solve boundary-layer equations (10) and (11),
the laws for the shearing stresson the wall aml the heat, flow
must be introduced. It is assumed that, in the layers wry
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near the walI, the conditions me similar for free- and forced-
ccmvection flow and that the same laws for the shearing stress
and the heat flow that are used in forced-convection flow can
therefore be used in free-convection flow. A simihmassump-
tion for the shearing stresswas used by Ton Kfmmfinto calcu-
late the radial flow on a rotating dkk, with satisfactory
resdts (reference 7).

h a consequence of the preceding assumption, equations
(2) and (8) will be used for free-con~ection flow. Very near
the waII the aeeond term in equation (12) for the free-
convect ion-velocity profile is 1 and, therefore, the same
transformation that led in forced flow from equation (2) to
~quation (3) can be made for free-con~ection flow. By intro-
ducing the evaluated integrals and equations (3) and (8),
the momentum and heat-flow equations become

()0.0523$ (U123)=0.125 ~@@X6—0.0225WI* ~
lj4

U16
(14)

Equations (14) and (15) are total dit7erentialequations from
which the two unknown values ~ and UIma-y be determined
m functions of z.

Equations (14) and (15) can be solved by introducing

u~= (-’”r=

8=(’6X’

TIM introduction of these ~alues transforms
and (15) into

(16)

(17)

t3quations (14)

Because equations (18) and (19} must be did for
of z, the exponents of x must be identica~, that is,

?m+n —l=n=$m —z
4

It can be seen that this condition is fulfilled if

rn=~ and n=z
10

With these values of m and n, equation (19) can
for the constant Cm

Cz=O.0689 PC&-h(Pr)-E/~

Introducing this constant into equation (18) gives

any value

(20)

be solved

(21)

CJ”=O.00338 ;. [1+o.494(Pr)q (Pr)-’”~: (22)

Introducing the Grashof number Gr=% gives for the

velocity

u1=l.185 ~ (Gr)l/2[1+0.494(Pr)t~q-~1 “ (23)

and for the boundary-layer thickuess

t=0.565z(Gr)-If Io(~r)-Sfls[l+ 0.494 (Pr)z~u10 (24)

Ylore significant than the vaIue UIis the maximum veIocity
u.x~ within the boundary layer. (See equation (13).) A
Reynolds number is obtainwl to make th~ velocity
dimensionless:

Rem#~= 0.636 (Gr)’@[l +0.494 (Pr)’~-I/* (25)

A more significant value characterizing the thickness of _
the boundary layer than the value 6 used up to now is the
displace.ment thickness 6*, which is defined for free-cogv~_ ..
tion flow by the equation

6*=
J ,m&”

With the use of equations (12) and (13) it is found that

5*=0.272 6

The displacement thickness made dimensionIees by the
disttince x from the leading edge of the plate is therefore ._

$=0.1 54[Gr)-1/10(Pr) -&/15[1+0.494 (Pr)2~~lo

The heat-transfer coefficient h=@?u at the point z on
the wail is found by introducing the boundary-layer thick-
ness 5 and the velocity U1into equation (8). ~nging to _
the usually presented hrussdt number A7U=kE/kgives

Nu= 0.0295 (Gr)~s(F’r)rlls[1+ 0.494 (Pr)*~-~5 (26)

In order to compare this equation with experimental results, _,
it is necessary to change from the local heat-tmnsfer eoe.f&
cient to the arerage -due along the pIate. By introducing
the expression for the Grashof number into equation (26),
it can be seen that the local heat-transfer coefficient & pro-
portional to the power 0.2 of the distance z (h=Cd~.
Tilth the assumption that the boundary layer is turbulent
from the leading edge, the average heat-transfer coefhcient
becomes

In reality the boundary layer is fist laminar and only at a
certain distante from the lower edge of the plate does it
become turbulent. The preceding expression for the average
heat-trsnsfer coefficient can therefore be expected to repre-
sent the true value onIy at Grashof numbe~ so high that
the extent of the larninar boundary layer is small oompared
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with the totaI length ~. This Iimit for the Grashof number
seems to be near IW. For Grashof numbem higher than
this value, the average h’usselt number can be calculated
with-equation (27); therefore,

.\’un,= O.0246 (Gr~/5(Pr)TJu[l+ 0.494(Pr)aq-gls (28)

In order to determine to what extent the shape of the
velocity profile influences the results, a calculation was made
with the second velocity distribution shown in figure 2:

“U=”’W7(’-9’ (29)

Only the numerical constants are influenced by the change
in the protlleshape. The constant preceding the value (Pr)wa
changes from 0.494 to 0.342 in all equations. In addition,
the value 0.636 changes to 0.487 in the equation for l?e~~;
in the equation for 6*/z the value 0.154 &anges to 0.200 and
in the equation for .h?u., the constant 0.0246 changes to
().0198.

COMPARISON liITH EXPERIMENTS

h tlgure4 the resultsof experiments carried out in dHerentt
investigations (references 1 and 2) are plotted as the average
Nusselt number h’u.,against- the product. Gr Pr. For the

1P I I I 1
/

I
–: ~~;~r;-} fRef&sJce f, fig. 25-57

A 9.01-in. @ate
}

[R? femnce 2, fig. [29
— v 2.99-inpfofe Ca77p-essedat%)

10’
0

, h ,

AL.
I I I

L.brnimr r&li0f7A

kl-ium#.–-iverue xusseltnnmherfor free-ammct[onflowson a rtiml phte.Esperf-
mente.1data from references I and 2.

lower values of Gr Pr the experimental results quite accu-
rately fit the equation

iVuaP=0.555 (UrPr)It4

which was, with a slight adjustment of the constant, theo-
retically derived for laminar free-con~ection flow. The
experimentalresultsin the turbulent range (Gr Pr= 10*ato 10la)
may be represented by the equation

lVud,=0.021 O(GrPr~/’ (30)

The exponent of the Grashof number in this equation is the
same as that of equation (28) derhed in the previous section.
When equation (28) is transformed into the form of equation
(30) in such a way that the values of both equationa are thk
same for Pr=O.72, the constant of equation (28) becomes
o.o21o. The heat-transfer coefficient deri~ed with equation
(12) for the ~elocity proflIe is in perfect agreement with the
experimental results. Such agreement is probably a coinci-
dence. The protie given by equation (29), which does not
fit the velocity distributions measured by Griffiths and Davis
in reference 3 as well as does the iirst protie, gives heat-
transfer coefficients that are 17 percent lower than the
measured vahes.

The values for the maximum velocity within the boundary
layer and the boundary-layer-displacement thickness agree
pocdy with the values measured in reference 3 in the turbu-
lent range. Heat-transfer coefficients were not measured
iherein on the experimental apparatus on which velocity and
temperature profles were obtained.

TThereasthevelocity and temperatureprcdileshapesasmeas-
ured in reference 3 are typical of turbulent free-convection
flow, the order of magnitude of these profiIes appears to
be in error. It can be shown that there is disagreement
within the measured values themselves. The heat given off
by the plate to the air stream must be carried away within
the boundary layer. The measured temperature and veloc-
ity profiles as vielI as the measured maximum velocity and
the boundary-layer thickness mry Iittle along the plate in
the turlndent range, which means that only a small part of
tie heat given off by the walI is found in the boundary layer.
The horizontal dimension of the plate may have been too
small compared with the -rerticaI length to make the flow
in the center part two-dimensional and air may have flowed
into the boundary layer from the sides.

SUMMARYOF RESULTS ;-

TYith the use of Kfmm6n’s approximate method, a calcu-
lation was carried out for the flow and heat transfer in the
turbulent free-convection boundary layer on a vertical flat.
pIate. The calculation used relations for the heat flow and
shearing stress on the wall developed for forced turbuIent
flow and velocity and temperature profiles that approximate
well the shapes of profiles measured by Gritliths and Davis.

A formula was derbed for the heat-transfer coetlicient that
vvaain good agreement with measured values in the range of
Grashof numbers from 10’0 to 101’ and that can be used to
extrapolate the values into the range of higher Grashof
numbers. The formula is -ralid for Prandtl numbers that
are close to 1.

The calculation also yielded formulas for the maximum
velocity in the boundary layer and for the boundary-layer
thickness.

LEWIS FLIGHT PROPGLSIOS LABORATORY,
N’MION~AL &msoRY COMMITTEE FOR AerOnaUtiCS :

CLWEUND, OHIO, A@ 12,1960.
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APPENDIX

SYMBOLS

The follom-ingsymbok are used in this report:
a thwmal di.ffusivity, sq ft/sec
CA constant for variation of heat-transfer coefEcient

with $“z
P.U constant for variation of velocity U1in boundary layer

with &
C$ constant for variation of boundary-layer thickness

with &
l-p specitic heat at constant pressure, Btu/(lb) (*F)

Gr Grashof number, ‘@#v-

fl acceleration due to gravity, ft/se@
h heat-transfer coefficient, Btu/(sq ft) (see) (“F)
k heat conductivity, Btu/(ft) (see) (“F)
[ length (&. 1), ft.
m exponent
~yu ~u%elk numbw @

‘k
,n exponent

Pr Prandtl number, l=Wa
------ --- IL l-- r.pressure, lu~sq LII

specific heat flow, Btu/(see) (WIft)
Reynolds number based on masimum -relocity u~~,

u=&c
Y

Stanton number, ‘=
gpcpulew

temperature, ‘F
velocity component in x-direction, ft/sec
velocity outside boundary layer of comparable forced-

convection flow, ft/sec
specific vohune, cu ftflb ..
coordinate (distance along plate from starting point of

boundary layer), ft
coordinate (distance from wall), ft
expansion coefficient, l/”F
boundary-layer thickness, ft . .

displacement thickness of boundary layer, ft .-
temperature ditlerence, *F --—
temperature difference between wail and fluid outside

of boundary layer, ‘F
absolute viscosity, PV, lb-secfsq ft
kinematic viscosity, sq ft/sec
mass density, (lb) (aec ~/ft- ~
shearing stress, lb/sq ft

Subscripts: -
ao a~erage value
max ma--urn falue
W on wall .-.

1. Jakob, Mas: Heat T~afer. John ‘Alley& Sons, Lnc., 1949.
2. Mc.kdarm, William H.: Heat Transmkion. 31cGraw-HiU Book

Co., Inc., 2d cd., lg=, p. 248.
3. Griffiths, Ezer, and Davis, A. H.: The Transmkion of Heat by

Radiatio~ and Convection. Special Rep. No. 9, Food Investiga-
tion Board, British DepL SCLand Ind. Res., 1922.
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